
International Journal of Advances in Engineering Research http://www.ijaer.com

(IJAER) 2013, Vol. No. 5, Issue No. I, January ISSN: 2231-5152

International Journal of Advances in Engineering Research

STUDY ON TEST-SUITE AND FAULT

CHARACTERIZATION

Sanjay Bharwaj

Abstract:

Since there is currently no standard way to choose these characteristics, the selection was necessarily

somewhat improvised but was driven by earlier research. Although the literature does not directly

suggest viable fault characteristics, it does

clearly point to certain test-suite characteristics. Because the test suites and faults

in this experiment were generated automatically, characteristics related to human

factors did not need to be considered. The independent variables in this experiment are

characteristics of faults and test

suites hypothesized to affect the probability of fault detection. To make this experiment practical to

perform, replicate, and apply in practice, only characteristics that can be measured

objectively and automatically were considered.

Key words: fault characteristics, test-suite characteristics, probability of fault detection.

 Introduction:

It should be noted that, while truly objective measures of faults—measures

of intrinsic properties, independent of any test set used to measure them—would

be derived from static analysis, static analysis of GUI-based applications is still

under development. In this experiment, most characteristic measures were

derived from execution data from the test pool, the set of all test cases used in

the experiment. This is not entirely objective because a different test pool would

International Journal of Advances in Engineering Research http://www.ijaer.com

(IJAER) 2013, Vol. No. 5, Issue No. I, January ISSN: 2231-5152

International Journal of Advances in Engineering Research

result in different measurements. Also, it threatens the assumption of independent

sampling of data points—an issue examined in Section 4.4.6. However, measures

that are closely tied to the test pool (e.g., those averaged across the test cases in the

pool) were avoided. The test pool can be seen as an instrument used to estimate

the true values of the measures (e.g., the minimum number of GUI events that must

be executed to reach the faulty code). As the test pool size increases, the estimates

converge to the true values.

Each characteristic describes some property of a fault or a test suite, such as the

degrees of freedom in execution of the faulty code or the proportion of the application

covered by the test suite. There are often multiple metrics to measure a characteristic, and

prior to analyzing the data it is not clear which best predicts Cov or Det. The rest of this

section lists the fault and test-suite metrics explored in this experiment, organized by the

characteristic they are intended to measure. These are summarized in Table 1.

International Journal of Advances in Engineering Research http://www.ijaer.com

(IJAER) 2013, Vol. No. 5, Issue No. I, January ISSN: 2231-5152

International Journal of Advances in Engineering Research

International Journal of Advances in Engineering Research http://www.ijaer.com

(IJAER) 2013, Vol. No. 5, Issue No. I, January ISSN: 2231-5152

International Journal of Advances in Engineering Research

 Review of literature

One fault characteristic studied is the method of creation, which for this experiment is

some form of mutation. Although there are too many mutation operators to study each

individually, they fall into two categories: class-level (e.g., changing the type of a data

member) and method-level (e.g., inserting a decrement operator at a variable use). Class-

level and method-level mutations were previously studied by Strecker and Memon [58, 60],

whose results were inconclusive but suggested that class-level and method-level faults may be

differently susceptible to detection. The label for the metric of mutation type is F.MutType.

Another fault characteristic is the distance of faulty code from the initial state.

Faults residing in code that is “closer”, in some sense, to the beginning of

the program are probably easier to cover and may be easier to detect. One metric

measuring this is the minimum number of source-code lines that must be covered

before the faulty line is executed for the first time (F.CovBef). This can be estimated

by running the test pool with program instrumentation to collect coverage data.

In a GUI-based application, a faulty line may lie in the event handler of one or more

events. These events can be associated with the line by collecting coverage data for each

event in each test case of the test pool. The minimum EFG depth of the events associated

with a faulty line (F.Depth) is another way to measure the distance of the line from the initial

state.

The repetitions in which the faulty code is executed may affect fault

detection. Faults that lie in code that, when executed, tends to be executed multiple times by

iteration or recursion may be easier to detect. Since, for the applications

studied, the exact number of times a line is executed depends closely on the test

case, two binomial metrics are studied instead. One is whether the the line is ever

executed more than once by an event handler (F.SomeRep). The other is whether

the line is always executed more than once by an event handler (F.AllRep).

Another fault characteristic that may affect fault detection is the degrees of

freedom in execution of the faulty code. In GUI-based applications, an event

handler can typically be executed just after any of several other event handlers.

International Journal of Advances in Engineering Research http://www.ijaer.com

(IJAER) 2013, Vol. No. 5, Issue No. I, January ISSN: 2231-5152

International Journal of Advances in Engineering Research

Faulty code executed by an event that can be preceded or succeeded by many other

events may be easier to cover, and it is not clear whether it would be more or less

susceptible to detection. The minimum or maximum number of event predeces-

sors or successors associated with a faulty line (F.MinPred, F.MaxPred, F.MinSucc,

F.MaxSucc) can be estimated by associating coverage data from the test pool with

the EFG. Faulty code executed by more events may also be easier to cover and

either more or less susceptible to detection. The number of events executing the

faulty code (F.Events), too, can be estimated with coverage data from the test pool.

Morgan et al. [39] report that program size affects fault detection in testing, so

the size of the event handler(s) that execute a faulty line may similarly have

an effect. Event-handler size can be measured as the minimum or maximum number

of lines covered by each event handler that executes the faulty line (F.MinWith,

F.MaxWith).

Material and method

Test-suite characteristics

For test suites, one interesting characteristic is the granularity of test cases— the

amount of input provided by each test case. In GUI testing, granularity can easily be

measured by the length (number of events) of a test case (T.Len). In this experiment, the

length of the test cases in a test suite could be measured either by taking the average of

different-length test cases in a suite or by constructing each suite such that its test cases

have a uniform length. The latter approach is chosen because it has a precedent in previous

work and because the assumption of uniform-length test cases, though unnecessary, is not

unrealistic for model-based GUI testing. Suites made up of longer test cases may reach “deeper”

program states, enabling them to cover and detect more faults.

Clearly, the characteristic of test-suite size can affect fault detection: larger

test suites are likely to cover and detect more faults. An important question studied

in this experiment is whether they do so when other factors, such as the suite’s

International Journal of Advances in Engineering Research http://www.ijaer.com

(IJAER) 2013, Vol. No. 5, Issue No. I, January ISSN: 2231-5152

International Journal of Advances in Engineering Research

coverage level, are controlled for. In some studies, test-suite size is measured as the

number of test cases. But for this experiment, since different suites have different

test-case lengths, a more meaningful metric is the total number of events in the

suite, which is the product of the test-case length and the number of test cases

(T.Events).

Another test-suite characteristic that can affect fault detection is the proportion of the

application covered. Obviously, the more of an application’s code

a test suite covers, the more likely it is to cover a specific line, faulty or not. It may also be

likely to detect more faults. The proportion of coverage may be

measured by any of the myriad coverage metrics proposed over the years. This

experiment considers several structural metrics—class (T.Class), method (T.Meth),

block (T.Block), and line coverage (T.Line)—because of their popularity and tool

support. For GUI-based applications, additional coverage metrics based on the

event-flow graph (EFG) are available. Event coverage (coverage of nodes in the

EFG) turns out not to be a useful metric for this experiment because each suite is

made to cover all events. However, coverage of event pairs (EFG edges or length-2

event sequences; T.Pairs) and event triples (length-3 event sequences; T.Triples) is

considered. (Longer event sequences could have been considered as well, but length 3 seemed a

reasonable stopping point for this experiment. Since this experiment does show coverage of

length-2 and length-3 sequences to be influential variables, future experiments can study

coverage of longer sequences.)

The first stage of the experiment involves building and collecting data from a sample

of test suites and a sample of faults. One of the contributions of this work is to make

data and artifacts from this experiment—products of thousands of computation-

hours and hundreds of person-hours—available to other researchers as a software-

testing benchmark
1
. The artifacts—including source code and configuration files for the

applications under test, GUI models created by GUITAR and tailored by the author and scripts

International Journal of Advances in Engineering Research http://www.ijaer.com

(IJAER) 2013, Vol. No. 5, Issue No. I, January ISSN: 2231-5152

International Journal of Advances in Engineering Research

-

used by the author—describe the experiment setup more precisely

than prose ever could.

GUI testing of the applications was performed with tools in the GUITAR

suite. To make the applications more amenable to these tools, a few modifi-

cations were made to the applications’ source code and configuration files (e.g., to

make file choosers open to a Furthermore, the test suites, faults, and data about them

provided in the benchmark can be reused by researchers to perform new studies.

Conclusion

Not only should the sample of test suites be large and replicable, but it should

also be an independent sample. In other words, the test suites in different 〈test

suite, fault〉 pairs should not be related to one another. For this reason, a unique

set of tests was generated for each 〈test suite, fault〉 pair. (The alternative would be to form

each test suite by selecting, with replacement, a subset of a large pool of test cases, as was

done in the preliminary study in Appendix A.)

 Each test suite satisfies two requirements. First, it covers every event in the

application’s EFG at least once. This is to avoid obvious conclusions—i.e., that faults in

code only executed by one event cannot be covered or detected if the event is not executed.

Second, its test cases are all the same length. This is so that test-case length can be studied

as an independent variable. The length must be greater than or equal to the depth of the EFG

to ensure that all events can be covered. The maximum test-case length studied in this

experiment is 20.

International Journal of Advances in Engineering Research http://www.ijaer.com

(IJAER) 2013, Vol. No. 5, Issue No. I, January ISSN: 2231-5152

International Journal of Advances in Engineering Research

Model-based GUI testing has the advantage of being automated, but this is

tempered by the fact that existing tools for generating and executing GUI test cases

are immature. Also, the EFG is only an approximation of actual GUI behavior;

because of enabling/disabling of events and other complex behavior in the actual GUI, not

every test case generated from the EFG model is executable. For these reasons, each test

suite must be generated carefully to ensure that every test case runs properly.

Bibliography

[1] First International Workshop on Testing Techniques and Experimentation

 Benchmarks for Event-Driven Software (Apr. 2009).

[2] Agrawal, H., Horgan, J. R., Krauser, E. W., and London, S. Incremental

regression testing. In Proceedings of ICSM ’93 (Washington, DC, USA, 1993), IEEE Computer

Society, pp. 348-357.

[3] Agresti, A. An introduction to categorical data analysis, second ed. John

Wiley & Sons, 2007.

[4] Andrews, J. H., Briand, L. C., and Labiche, Y. Is mutation an appropriate tool

for testing experiments? In Proceedings of ICSE ’05 (2005), pp. 402-411.

[5] Andrews, J. H., Briand, L. C., Labiche, Y., and Namin, A. S. Using mutation

analysis for assessing and comparing testing coverage criteria. IEEE Trans. Softw. Eng. 32, 8

(2006), 608-624.

[6] Basili, V. R. Software development: a paradigm for the future. In Proceedings of

COMPSAC ’89 (1989), IEEE Computer Society, pp. 471-485.

[7] Basili, V. R., and Perricone, B. T. Software errors and complexity: an empirical

investigation. Commun. ACM 27, 1 (1984), 42-52.

International Journal of Advances in Engineering Research http://www.ijaer.com

(IJAER) 2013, Vol. No. 5, Issue No. I, January ISSN: 2231-5152

International Journal of Advances in Engineering Research

[8] Basili, V. R., and Selby, R. W. Comparing the effectiveness of software testing

strategies. IEEE Trans. Softw. Eng. 13, 12 (1987), 1278-1296.

[9] Basili, V. R., Shull, F., and Lanubile, F. Building knowledge through families

of experiments. IEEE Trans. Softw. Eng. 25, 4 (1999), 456-473.

[10] Briand, L. C., Melo, W. L., and Wst, J. Assessing the applicability of fault-

proneness models across object-oriented software projects. IEEE Trans. Softw. Eng. 28, 7

(2002), 706-720.

[11] Brooks, F. P. The Mythical Man-Month: Essays on Software Engineering,

anniversary ed. Addison-Wesley Pub. Co., 1995.

[12] Cai, K.-Y., Li, Y.-C., and Liu, K. Optimal and adaptive testing for software

reliability assessment. Information and Software Technology 46, 15 (2004),

989-1000.

[13] Clark, B., Devnani-Chulani, S., and Boehm, B. Calibrating the COCOMO II

post-architecture model. In Proceedings of ICSE ’98 (Washington, DC, USA, 1998), IEEE

Computer Society, pp. 477-480.

[14] Clarke, L. A. A system to generate test data and symbolically execute

programs. IEEE Trans. Softw. Eng. 2, 3 (1976), 215-222.

[15] Davis, M. D., and Weyuker, E. J. Pseudo-oracles for non-testable programs. In

Proceedings of the ACM ’81 conference (New York, NY, USA, 1981), ACM, pp. 254-257.

[16] Do, H., and Rothermel, G. On the use of mutation faults in empirical

assessments of test case prioritization techniques. IEEE Trans. Softw. Eng. 32, 9 (2006), 733-

752.

